
 1 

Error rate and statistical power of distance-based measures of phylogeny-trait 1 

association. 2 

 3 

Joe Parker1,2 and Oliver G. Pybus2 4 

 5 

1. Kitson Consulting, Bristol, UK; Present address: Jodrell Laboratory, Royal Botanic Gardens, 6 
Kew, UK 7 
 8 

2. Department of Zoology, University of Oxford, UK. 9 

 10 

Running title: Performance of phylogeny-trait association statistics 11 

Word count: 7,621 12 

Corresponding Author: 13 
Joe Parker 14 
Jodrell Laboratory,  15 
Royal Botanic Gardens, Kew,  16 
TW9 3DS, UK 17 
Tel. +44 20-8332-5063 18 
Fax +44 20-8332-5197 19 
j.parker2@kew.org 20 

21 



 2 

SUMMARY 1 

Building on work presented previously (Parker et al., 2008), we study a number of more 2 

complex measures of phylogeny-trait association (implemented in the program ‘Befi-BaTS’) 3 

which take into account the branch lengths of a phylogenetic tree in addition to the 4 

topographical relationship between taxa. Extensive simulation is performed to measure the 5 

Type II error rate (statistical power) of these statistics including those introduced in Parker et al. 6 

(2008), as well as the relationship between power and tree shape. The technique is applied to 7 

an empirical hepatitis C virus data set presented by Sobesky et al. (2007); their original 8 

conclusion that compartmentalization exists between viruses sampled from tumorous and non-9 

tumorous cirrhotic nodules and the plasma is upheld. The association index (AI), migration (PS), 10 

phylodynamic diversity (PD) and unique fraction (UF) statistics offer the best combination of 11 

Type I error and statistical power to investigate phylogeny-trait association in RNA virus data, 12 

while the maximum monophyletic clade size (MC) and nearest taxon (NT) statistics suffer from 13 

reduced power in some regions of tree space. 14 

 15 

Keywords: BaTS, hepatitis C virus, Markov-chain Monte Carlo, Phylogeny-trait association, 16 

Phylogenetic uncertainty, simulation. 17 

18 
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INTRODUCTION 1 

Previously, we reviewed many areas of viral evolutionary biology where more accurate 2 

estimation of the degree of association between the phylogenetic structure of a data set and the 3 

distribution of trait values of some character of interest at the tips of that phylogeny is desirable 4 

(Parker et al., 2008). These included viral phylogeography (Holmes, 2004; Starkman, 2003); 5 

population structure (Carrington et al., 2005; Nakano et al., 2004); epidemiology (Leigh Brown 6 

et al., 1997) and compartmentalization (Pillai et al., 2006; Salemi et al., 2005; Fulcher et al., 7 

2004) as well as T-cell escape (Bhattacharya et al., 2007; Komatsu et al., 2006; Sheridan et al, 8 

2004). 9 

 10 

However, we also noted that previously adopted methodologies such as AMOVA (Sullivan et al., 11 

2005), single tree estimation (Potter et al., 2004) or the Slatkin-Maddison test (Skatkin & 12 

Maddison, 1989), were deficient in some respects; significantly they failed to correctly 13 

incorporate phylogenetic error due to reliance on single-tree approaches to phylogeny-trait 14 

correlation. As a result, these methods were unable to assign significance to observed 15 

phylogeny-trait correlations. To address these concerns, in Parker et al. (2008) we presented a 16 

novel implementation (‘BaTS’) of three measures of phylogeny-trait association – the 17 

Association Index (‘AI’; Wang et al, 2001); parsimony score (‘PS’; following Fitch, 1971b); and 18 

introduced the new maximum monophyletic clade size statistic (‘MC’). BaTS calculates these 19 

statistics in a Bayesian MCMC framework that takes into account phylogenetic uncertainty by 20 

‘averaging’ over the posterior distribution of trees. The Type I error rate of these statistics was 21 

also measured through simulation and found to be correct.  22 

 23 

The conclusions of Parker et al. (2008) form the starting point for this study. An incorrect Type I 24 

error rate (false rejection of the null hypothesis) is generally taken to be a more serious flaw in 25 



 4 

any statistical approach than a Type II error rate (failure to correctly reject the null hypothesis 1 

where a significant result exists) since a definitive rejection of the null hypothesis leads us to 2 

modify our model. However, in studies of viral evolution large amounts of sequence data are 3 

often generated at considerable financial and scientific expense in order to investigate a 4 

particular hypothesis (e.g., viral compartmentalization). In this light it seems clear that high 5 

statistical power (low Type II error) is also desirable in a statistical test. Accordingly, this study 6 

uses extensive simulations to quantify the Type II error rate of phylogeny-trait association 7 

statistics, as implemented in a Bayesian framework. 8 

 9 

The AI, PS and MC statistics investigated previously depend only on tree topology; they take 10 

into account only the branching order of taxa, not the absolute evolutionary distance between 11 

them. However, RNA viruses are capable of very rapid evolution (Jenkins et al., 2002; Drake et 12 

al., 1998) and their phylogenies exhibit a wide range of tree shapes, from highly ‘comb’-like 13 

(internal nodes distributed towards the terminal taxa) in dengue virus, to stat-like phylogenies 14 

with very long external branches (as in HIV population-level phylogenies) and highly unbalanced 15 

trees (e.g. influenza virus A population phylogenies; Grenfell et al., 2004). It is therefore 16 

reasonable to consider the relevance of branch length information to the estimation of 17 

phylogeny-trait correlation.  18 

 19 

Figure 1 gives an example of two trees that differ in tree branch lengths but share a topology, 20 

and have the same distribution of a hypothetical ‘red / blue’ trait at their terminal taxa. The AI 21 

statistic introduced by Wang et al. (2001) here measures the strength of association between 22 

the red or black traits’ distribution and the phylogeny (higher values reflect a stronger 23 

association). Both the trees in Figure 1 would be calculated to have an AI of 0.059; this 24 

suggests that the red / blue trait is equally correlated with phylogeny, and of equal biological 25 

significance, in both data sets. However, the ‘red’ trait’s association with phylogeny has been 26 
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maintained through a considerable period of evolution and time in the clade containing taxa  ‘e’ 1 

and ‘f’ in Figure 1b, while the same correlation has so far been maintained over a much shorter 2 

period of evolution in Figure 1a. We might reasonably conclude that the association pattern 3 

seen in Figure 1b is more significant than that seen in Figure 1a – yet because the AI statistic 4 

ignores branch length information, we are unable to do so. 5 

 6 

This study investigates four new statistics that include branch length information as well as 7 

taking into account the topological relationships among taxa. They are the phylogenetic diversity 8 

(‘PD’) measure of Faith (1992); the Net Relatedness (‘NR’) and Nearest Taxa (‘NT’) indices of 9 

Webb (2000; 2002); and the Unique Fraction (‘UniFrac’ or ‘UF’) statistic of Lozupone & Knight 10 

(2005).  11 

By including branch length information these statistics may be able to discriminate between the 12 

two trees presented in Figure 1; Figure 2 shows the same phylogenies, but this time values for 13 

the new statistics are given. This time tree b) shows a stronger phylogeny-trait association than 14 

tree a) – the UniFrac, NT, NR and PD values are all higher. 15 

 16 

This study seeks to investigate, through extensive simulation, the Type I and Type II error rates 17 

of all the statistics introduced in this chapter and those introduced in Parker et al. (2008). The 18 

influence of tree shape on the Type I error rate is also investigated: since this technique is 19 

implemented in a Bayesian framework, the observed and null distributions of the association 20 

statistics are calculated from the posterior set of trees (PST). This is sampled from the true 21 

posterior distribution of topologies (topologies are sampled in proportion to their posterior 22 

probability) so power should be maintained equally well in topologies that are traditionally 23 

problematic for evolutionary parameter estimation (e.g. star-like trees). To illustrate the use of 24 

these statistics, we apply them to an empirical data set of within-patient HCV sequences, 25 

sampled from a number of different tissues by Sobesky et al. (2007). We re-visit their central 26 



 6 

hypothesis of genetic compartmentalization between tumoral and non-tumoral HCV-infected 1 

hepatocytes.  2 

3 
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METHODS 1 

In this study we add a number of new statistics to the BaTS package, first introduced in Parker 2 

et al. (2008). The new statistics differ from those implemented previously; they incorporate 3 

branch length information as well as tree topology. Therefore it is more important to ensure the 4 

model of substitution is correctly selected and estimated to obtain accurate estimates of genetic 5 

distance, in addition to efficient sampling of the posterior distribution of tree topologies.  6 

 7 

The Statistics: In the foregoing descriptions, s is defined as a subset of taxa on phylogenetic 8 

tree that only and exclusively possess a given discrete phenotypic trait value. They are not 9 

assumed to be monophyletic. 10 

 11 

Phylogenetic Diversity (‘PD’): The PD statistic was first proposed by Faith (1992) and is a 12 

simple intuitive measure of the amount of ‘diversity’, or genetic distance, captured by a subset s 13 

of taxa in a phylogeny. The PD of s here equals the sum of branch lengths (including terminal 14 

branches) in the subtree connecting all taxa in s but excluding any branches (internal or 15 

external) leading only to taxa that are not in s (the ‘minimum spanning path’, or MSP). To give 16 

an estimate of the strength of phylogeny-trait association in a data set, the PDs
 of s is divided by 17 

the sum of all branch lengths in the phylogeny. This measure is summed for all subsets in of 18 

taxa present to give an estimate of the strength of association; in a completely-associated case 19 

the MSP of each subset will be shorter (and PDs smaller) than in an interspersed case. 20 

 21 

Nearest Taxon (NT): The NT score of s is defined as the sum, over all taxa in s, of branch 22 

lengths between each taxon and the nearest taxon that is also in s. This definition is modified 23 

from that proposed by Webb (2000) in two ways: Firstly, we use branch lengths rather than 24 

nodal distances. Secondly, and importantly, we do not divide the sum of NT distances by the 25 
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maximum possible sum of nearest taxa distances in a tree to create an index. Instead, we 1 

simply measure the sum of NT distance for all taxa subsets in a tree. It is not necessary in the 2 

context of this study to create an index as Webb (2000) originally did, since BaTS generates a 3 

correct null distribution for the statistic through randomization of taxa trait allocations. 4 

Furthermore, calculating the maximum possible value exactly is computationally expensive in 5 

the current BaTS implementation, especially for large data sets. 6 

 7 

Net Relatedness (NR): The net relatedness is defined as the sum of all pairwise distances 8 

between all members of s. As with the NT statistic, Webb (2000) introduced the statistic using 9 

nodal distances for calculation, and divided the NT by a maximum possible value of this statistic 10 

for any equally-sized subset of taxa to create an index. Again, the statistic is implemented here 11 

using estimated branch lengths in place of nodal distances and not as an index, instead 12 

calculating the significance of the observed NR value by generating an appropriate null 13 

distribution by simulation. 14 

 15 

Unique Fraction (‘UniFrac’, or ‘UF’): This simple measure, introduced by Lozupone & Knight 16 

(2005) is the proportion of internal branches on a phylogeny that connect nodes whose trait 17 

values are unambiguously resolved following trait value reconstruction by parsimony (Fitch, 18 

1971b). The sum of UF values for s is expressed as a ratio of the sum of internal branch lengths 19 

of the tree. 20 

 21 

Incorporating phylogenetic uncertainty 22 

Phylogenetic uncertainty (statistical error in phylogenetic estimation arising from sequence data) 23 

is taken into account using the approach developed in Chapter Two. The expanded computer 24 
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package, Befi-BaTS 0.1.1 Alpha (Bayesian Tip-association Significance) is available from 1 

http://www.lonelyjoeparker.com/BaTS 2 

 3 

Simulation 4 

Previously, we estimated the Type I statistical error (i.e. the probability of falsely rejecting the 5 

null hypothesis) through simulation. If the statistic is correct then the distribution of p-values of a 6 

set of randomly drawn phylogeny-trait associations should follow a unit uniform distribution. 7 

Here, we repeat that approach to investigate the Type I statistical error of the newly-introduced 8 

PD, NT, NR & UF statistics. 9 

 10 

In addition, we conduct a new series of simulations to test the Type II error rate of all phylogeny-11 

trait association statistics. The Type II error rate is defined as the frequency at which a method 12 

fails to reject the null hypothesis when it is false. This is also known as the ‘power’ of a statistical 13 

method; a statistic may have a correct Type I error rate, but its applicability to analysis will be 14 

limited if it is weak or overly conservative (of diminished power) since it may ignore too many 15 

significant results. 16 

 17 

The set of test phylogenies simulated in Parker et al., (2008) were used to explore the power of 18 

these statistics. Firstly, a set of test alignments were generated and analyzed in BEAST to 19 

obtain a set of PSTs with which to test Befi-BaTS: 20 

 21 

1. 1000 phylogenies were generated under a pure-birth process using Phylo-O-Gen 22 

(available from http://evolve.zoo.ox.ac.uk). The tree imbalance (Colless, 1982) and node 23 

spread (γ, Pybus & Harvey, 2000) statistics were calculated for each tree in the set. Nine 24 

‘master’ topologies were selected that reflected all possible combinations of tree 25 
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imbalance and node spread for tree imbalance values of (0, 0.125, 0.5) and γ values of (-1 

2, 0, 2). Figure 5.3 shows a diagram of the range of tree shapes thus selected. 2 

2. A large set  (n = 1000) of alignments were simulated from each of the nine master tree 3 

topologies by Seq-Gen (Rambaut & Grassly, 1997). Substitution model parameters 4 

derived from typical human immunodeficiency virus Type 1 (HIV-1) data were used1. 5 

Each alignment contained 32 taxa and was 300 nucleotides long. 6 

3. The PST for each alignment was then estimated using BEAST v1.4 (Drummond & 7 

Rambaut, 2007). An HKY85 + Γ substitution model with codon-position-specific 8 

substitution rates and the strict molecular clock enforced (rate fixed to µ= 0.017) under a 9 

constant population-size demographic model. 10 

4. The set of simulations was down-sampled (to n = 897) to reduce computation. The first 11 

10% of each PST was removed as burn-in. The PSTs produced were used for the 12 

shuffling procedure below.  13 

5. Statistics that measure tree spread tree imbalance and node spread (two measures that 14 

together, describe most aspects of tree topology) were calculated for these source trees 15 

using code from the TreeStat program (Drummond & Rambaut, 2007. Available from: 16 

http://tree.bio.ed.ac.uk); I developed a modified command-line interface to facilitate 17 

batch processing (author’s work, available on request). The statistics calculated were: 18 

B1 (Kirkpatrick & Slatkin, 1993); Tree-imbalance (Colless, 1982); Cherry count (Steel & 19 

Mackenzie, 2001); γ and δ (Pybus & Harvey, 2000) and Fu & Li’s D (Fu & Li, 1993). 20 

 21 

                                                 
1 The substitution model parameters were derived from analysis of the env gene data set sampled 

from Patient AB in BEAST analysis (Chapter Four). Transition : transversion ratio = 2.54; 

Nucleotide frequencies, A=0.426, C=0.152, G=0.182; specific substitution rates for first, second 

and third codon positions respectively, µ1 = 0.0152, µ1 = 0.0142, µ1 = 0.0215 (in substitutions 

per site per year). 
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In the second stage, the 897 PSTs generated in step 4 above were used to investigate the 1 

power of the phylogeny-trait association statistics. In order to measure the Type II error rate it 2 

was necessary to generate data sets with different levels of phylogeny-trait association as 3 

follows: 4 

 5 

1. Each taxon in each PST of the set of PSTs was initially labelled with a hypothetical 6 

binary character trait (e.g., ‘black’ / ‘white’) using the known master topology (the 7 

underlying ‘true’ tree) in step 1 above to ensure maximal phylogeny-trait association. 8 

These phylogeny-trait labellings are referred to as ‘completely associated’. 9 

2. A new set of phylogeny-trait associations were generated by selecting two taxa at 10 

random and exchanging their trait values. This is referred to as a ‘shuffle’. Note that the 11 

posterior set of trees remains unchanged; only the taxon-trait labelling is modified. 12 

3. Re-arrangements were carried out to give multiple data-sets, each comprising 897 PSTs 13 

with the same trees but varying numbers of shuffles. As the number of shuffles 14 

increases, the tip-trait associations become more random, from the completely 15 

associated set (0 shuffles) to a set with random taxon trait labels (10,000 shuffles). Data 16 

sets of 1, 2, 3…33, 60, 70, 80, 90, 100, 500, 1000, 5000 & 10000 shuffles were 17 

produced. 18 

4. Each shuffled data set was analysed with Befi-BaTS (using 100 replicates to calculate 19 

the null distribution) to determine: a) the frequency of positives in each statistic (statistics 20 

whose observed values p ≤ 0.05) and b) the mean significance (p-value) of each 21 

statistic. In addition, the cumulative density function (CDF) of each statistic for every 22 

shuffled set was determined by ordering and binning the p-values obtained. These CDFs 23 

were compared to a unit uniform distribution using the Kolmogorov-Smirnov test 24 

(Lilliefors, 1969; Massey, 1951) to investigate the transition between the completely 25 

associated, interspersed, and random cases of phylogeny-trait association. 26 
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 1 

Empirical Data 2 

To illustrate the application of this technique to viral sequence data, we analysed an empirical 3 

hepatitis C virus (HCV) data set reported by Sobesky et al. (2007). The authors sought to 4 

determine whether significant genetic compartmentalization existed between HCV virus 5 

populations sampled from peripheral blood and from cirrhotic nodules (two normal and one 6 

cancerous) of a post-transplant human liver. Individual hepatocytes were sampled by 7 

microdissection whilst serum samples were taken in vivo. Data was collected from seven 8 

patients and alignments spanned 573 nucleotides of the core gene.  9 

 10 

To investigate the hypothesis of compartmentalization using the new methods introduced here, 11 

a PST was calculated from the data (aligned using Se-Al; http://evolve.zoo.ox.ac.uk) using 12 

BEAST 1.4 (Drummond & Rambaut, 2007) for two patients from the data set: P1 (n = 70 13 

sequences) and P7 (n = 68 sequences). Substitution, clock and demographic models were 14 

selected based on the most likely models identified for similar data (the core gene window of the 15 

‘Anti-D’ within-patient data set in Chapter Three): a constant population-size model of 16 

demographic growth and an HKY85 + Γ model of nucleotide substitution with the strict 17 

molecular clock enforced at 0.005 substitutions / site / year. Six MCMC analyses were 18 

independently performed for 10,000,000 states each to check convergence. Taxa were labelled 19 

with their tissue of origin, and analyzed in Befi-BaTS with 100 replicates used to calculate the 20 

null distribution. 21 

22 
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RESULTS  1 

Type I Error rate 2 

The number of significant results (p ≤ 0.05) obtained using each statistic when taxon trait labels 3 

were shuffled 10,000 times is given in Table 1. This simulates random taxon trait allocation (the 4 

null hypothesis), so equals the Type 1 error rate of these statistics. The CDFs of all statistics 5 

were not significantly different from a unit uniform distribution in the 10,000 shuffles data set. 6 

7 

 8 

Type II Error rate 9 

Figures 4 – 10 give the results for the AI, PS, PD, UF, NR, NT & MC statistics respectively. In 10 

each figure, the top plot shows the cumulative density function (CDF) of the statistic for 11 

increasingly shuffled (more weak phylogeny-trait association) simulations, the centre plot shows 12 

the proportion of rejections of H0 with increasing shuffles and the bottom plot shows the mean p-13 

value of the test with increasing shuffles. A red dashed line is drawn at p = 0.05. 14 

 15 

CDF curves for most statistics show a smooth transition from maximal association (no shuffles) 16 

to random tip-trait associations (approximately those simulations with more than 100 shuffles). 17 

The randomly associated simulations have CDFs that are unit uniformly distributed (diagonal 18 

grey line). However, the MC statistic CDFs quickly fall below the diagonal line, even at low 19 

numbers of shuffles, indicating that the MC statistic is a weak measure. In contrast the NR 20 

statistic CDF never reaches the diagonal line, suggesting the Type I error of this statistic may 21 

not be correct at some levels of α. 22 

 23 



 14 

The Kolmogorov-Smirnov test (Lilliefors, 1969; Massey, 1951) was used to calculate the 1 

significance of difference between p-values CDF of each simulation and a unit uniform 2 

distribution (the expected distribution of p-values under the null hypothesis). The value of the 3 

Kolmogorov-Smirnov statistic, D+, and significance, are given in Figure 5.11. Across the range 4 

of shuffles used, the NR statistic showed the weakest departure from uniformity, while the NT 5 

and PS statistics showed greatest departure from uniformity. 6 

 7 

The number of significant tests and the mean significance of each test that are given in Figures 8 

4 – 10 for each statistic are presented together for visual comparison in Figure 12 and Figure 9 

13. Figure 12 shows that the proportion of significant tests (p ≤ 0.05) obtained using the MC and 10 

NT statistics declines more rapidly with the number of shuffles than other statistics, indicative of 11 

weak statistical power. The PS and NR statistics, on the other hand, continue to strongly reject 12 

H0 even in large numbers of shuffles. Equally, in Figure 13 the mean p-values of the tests 13 

(probability of accepting the null hypothesis) rapidly increases with increasing shuffles for the 14 

MC and NT statistics. In contrast, the PS and particularly, NR, statistics show a lower mean 15 

significance. 16 

 17 

 18 

19 
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Sensitivity of phylogeny-trait association measures to tree shape 1 

The distribution of common tree shape statistics on the set of PSTs used in each simulated data 2 

set to test the phylogeny-trait association statistics (n = 897) is shown in Figure 14. The nine 3 

topologies used to simulate the initial sequence alignments can be discerned as discrete 4 

clusters. 5 

 6 

Figure 5a shows the distribution of p-values for each phylogeny-trait statistic when applied to 7 

data sets with maximal phylogeny-trait association (i.e., no trait shuffles between tips). The 8 

majority of statistics show no distinct pattern of failures to reject the null hypothesis (p > 0.05) 9 

with tree shape, but the MC and NT statistics appear to do so at conditions of high γ values 10 

(‘comb-like’ topologies, with a distribution of nodes pushed towards the tips of the tree) and 11 

either high B1 values (strong node imbalance; NT statistic) or low B1 values (balanced trees; 12 

MC statistic.) These figures are reproduced in more detail in Figure 15b; it can be seen that a 13 

large proportion of simulations in these two cases accept H0. In fact, under this completely 14 

associated simulation, the NT statistic rejected H0 in 10% of trials while the MC statistic rejected 15 

H0 in 8.5% of trials. It is possible that the discrete nature of these statistics gives rise to this 16 

behaviour; none of the other statistics rejected the null hypothesis in any trials under this 17 

simulation. 18 

 19 

20 
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Compartmentalization in the liver during chronic HCV infection 1 

Sobesky et al. (2007) studied compartmentalization between HCV viruses sampled from the 2 

peripheral blood and two types of cirrhotic nodules (tumorous and non-tumorous) in seven 3 

patients with chronic hepatitis C infection and hepatocellular carcinoma (HCC). 573nt 4 

sequences were obtained from the core gene by clonal PCR; Patients P1 (n=70) and P7 (n=68) 5 

from the original data set were re-analyzed in this study to examine the evidence for 6 

compartmentalization with Befi-BaTS (see Methods). The Befi-BaTS analysis identified 7 

significant compartmentalization by all methods (Table 2), except in the MC measurements in 8 

Patient 1, where only clades of sequences sampled from tumorous nodules were found to be 9 

significantly larger than expected due to chance. I also measured the γ and B1 tree shape 10 

statistics in these patients with TreeStat (Table 2). 11 

12 
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DISCUSSION 2 

Empirical data: In their original report, Sobesky et al. (2007) visually compared single 3 

neighbour-joining (NJ) trees and calculated within- and between-compartment genetic 4 

distances. By the visual comparison method, they detected clear compartmentalization in 5 

Patient P7 but only limited clustering in Patient P1. They also used Mantell’s test (Mantell, 1967) 6 

to detect the significance of correlation between pairwise distances and compartment location; 7 

again there was significant evidence for compartmentalization in P7 but only for some 8 

compartments in P1. The Befi-BaTS analysis conducted here showed significant 9 

compartmentalization (p < 0.05, all statistics) in P7 and also in P1 (p < 0.05, all statistics except 10 

MC).  Therefore Befi-BaTS not only incorporates phylogenetic error correctly, but also has more 11 

power to reject the null hypothesis in empirical data sets. 12 

 13 

Performance of phylogeny-trait association statistics: This study shows the importance of 14 

rigorous validation in phylogenetic statistics development. The Type I error rates of the MC and 15 

NT statistics were correct; however on further inspection, they were shown to be statistically 16 

weak; furthermore, their Type II error rate seems to be linked in some way to tree shape – 17 

further work is needed to explore this relationship and until that time their behaviour on other 18 

topologies may be considered too unpredictable. The NR statistic, though powerful and not 19 

sensitive to tree shape, displayed a slightly elevated Type I error rate. It may be that, with 20 

further refinement, this will become a valuable statistic but for now its incorrect Type I error 21 

means it should be employed with caution. Of the remaining statistics, the AI, PD & UF statistics 22 

have very similar Type II error rates, though differing Type I error rates (AI having a slightly high 23 

Type I error rate, at 0.051) while the PS statistic is slightly more powerful, but does not include 24 

branch length information as PD and UF do. 25 
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 1 

 2 

The statistics’ sensitivity to tree shape was also investigated; the MC and NT statistics both 3 

appear to suffer from reduced power under certain conditions, illustrated in Figure 16. The MC 4 

statistic was weak when trees were comb-like (internal nodes distributed toward the tips of the 5 

tree) in balanced trees (such as in the top-right hand corner (blue box) of Figure 16). The NT 6 

statistic was weak in unbalanced comb-like trees (such as in the top-left corner (red box) of 7 

Figure 16). What both cases have in common is that in very comb-like trees, internodal 8 

distances among the immediate ancestors are often minimal, reflecting low sequence 9 

divergence. As a result, reconstructing phylogenetic relationships in these cases may be 10 

problematic: single ML trees often represent these relationships as soft polytomies. In a 11 

posterior set of trees this will manifest itself as a wider variation in tree branching orders. 12 

However, both the MC and NT statistics are most sensitive to changes in branching order near 13 

the tips of a phylogeny: the MC statistic because the largest clade monophyletic for a given trait 14 

value in a phylogeny rarely extends deeply to the root, as can be verified by comparing the 15 

observed MC size with number of tips in total; the NT statistic by implication since it calculates 16 

the nearest taxon of the same trait value over all taxa – which will frequently traverse the tree no 17 

deeper than the first or second ancestor node.  18 

 19 

Where large variance exists this may result in lower observed mean MC clade sizes than in less 20 

comb-like trees. Furthermore the observed MC clade sizes may be further lowered since in 21 

unbalanced phylogenies monophyletic clades arise under a narrower range of possible trait 22 

associations than in balanced phylogenies. To illustrate this point, consider two trees where 23 

one, C (which might be similar to the tree in the top-left corner of Figure 16), is completely 24 

symmetrical, and the other, U, is unbalanced (similar to the tree in the top-right corner of Figure 25 

16). Now suppose we begin with no character traits assigned to any of the tips, and assign a 26 



 19 

hypothetical ‘white’ trait to four of the tips in such a way as to maximise phylogeny-trait 1 

association. However, the first ‘white’ trait must be assigned at random. 2 

 3 

It can be seen that the position of the first trait value on C is irrelevant; a monophyletic clade of 4 

‘white’ traits can still be created. However, any monophyletic clade in U must include the two 5 

uppermost taxa. In other words, for any tree of more than three taxa, more phylogeny trait 6 

associations leading to monophyletic clades of size two or larger are possible in balanced trees 7 

than in unbalanced trees. The MC statistic therefore suffers from reduced power in unbalanced 8 

comb-like trees because observed mean MC clade sizes tend to be smaller, increasing the 9 

potential overlap between observed and null distributions. 10 

 11 

The NT statistic is expected to correlate with strength of trait-phylogeny association because 12 

phylogenetically related taxa should be separated by minimal evolutionary distance. This can 13 

usefully be considered here as the sum of the two external branch lengths in question (which 14 

will not depend on their phylogenetic proximity) and the internal branch distance separating 15 

them, which will depend on their evolutionary relationship. In comb-like trees, the nearest-16 

neighbour distance between two taxa of the same trait value (as calculated in the observed NT 17 

size) will be largely determined by their external branch lengths, since, as in the MC statistic, 18 

they will rarely be separated by more than a few internal nodes. However, the expected NT 19 

distances will vary, depending on the degree of tree imbalance. In symmetrical comb-like trees, 20 

the nearest-neighbour distances of any randomly-chosen pair of taxa will vary little; in other 21 

words, observed and expected NT values will be similar, since the distribution of possible NT 22 

distances is relatively smooth. I therefore suggest that the power of the NT statistic could be 23 

improved by considering only internal branch lengths. These results underscore the importance 24 

of exploring the effect of likely parameter values on statistical power. 25 

 26 



 20 

Furthermore, on reflection the distance-based statistics (UF, NT, NR and PD) may generally 1 

suffer from another drawback. The null distribution for all these statistics is calculated by 2 

random allocation of trait values on the tips of the phylogeny (see Parker et al., 2008 - 3 

Methods). Effectively, this method only randomizes the association of trait values with branching 4 

order, not branch length. The null hypothesis is that there is no evolutionary association 5 

between taxa with identical trait values; that two taxa are as likely to have the same trait value if 6 

they are selected at random or if they share phylogenetic ancestry.  7 

 8 

Where shared phylogenetic ancestry is represented by common topology (as in the AI, PS and 9 

MC statistics introduced previously) it is necessary and sufficient to generate the null distribution 10 

through randomizing branch orders since power to reject the null hypothesis arises from lower-11 

than-expected numbers of internal nodes separating associated traits. However, in the case of 12 

statistics that incorporate branch length information (as in the UF, PD, NT & NR statistics 13 

introduced in this chapter) it may not be sufficient to simply randomize branching order as in 14 

Parker et al. (2008) to calculate a null distribution. A more appropriate null distribution would 15 

randomize both branch order and branch lengths in the tree – Freckleton & Pybus (2006) 16 

followed a similar approach to test trait association. Alternatively, a new phylogeny could be 17 

generated de novo. Pybus and Harvey (2000) used birth-death models to usefully simulate 18 

phylogenetic trees; alternatively the coalescent (Kingman 1982a, b) might provide a suitable null 19 

model. Clearly further work is needed to establish how the null distribution for distance-based 20 

phylogeny-trait association statistics may be most efficiently calculated. 21 

 22 

We have developed this technique in order to take advantage of Bayesian MCMC processes 23 

that more adequately estimate the true topology of a phylogeny, as they incorporate 24 

phylogenetic error in the estimation process through the posterior set of trees. In Parker et al. 25 



 21 

(2008) it was not important to accurately estimate the substitution model and molecular clock 1 

model, since the measures of phylogeny-trait association (AI, PS, MC) were purely topological.  2 

However with respect to phylogeny-trait association statistics incorporating branch length 3 

information (PD, NT & NR, UF) branch lengths must be more accurately estimated. This 4 

presents a challenge since model selection procedures in Bayesian MCMC methods are 5 

laborious and in the process of development. That is, although Bayesian MCMC methods 6 

explore the parameter space of a given substitution model well, the actual choice of model used 7 

may be subject to misspecification (Suchard et al., 2001). Since these measures depend on 8 

accurate branch length estimation, misspecification of the substitution model may lead to 9 

serious consequences for the accuracy of these statistics. 10 

 11 

Accordingly, we suggest that the best available model selection procedures should be followed 12 

when these statistics are used to quantify phylogeny-trait association. Furthermore, work needs 13 

to be done to quantify the sensitivity of these statistics to substitution model misspecification. 14 

More generally, this conclusion (and the result seen in e.g. Gray et al, 2011) strongly suggests 15 

that substantial further work is needed to put model selection in Bayesian MCMC phylogenetic 16 

analyses on a more rigourously-tested footing, with commonly-accepted standards of model 17 

selection. 18 

 19 

In conclusion, this study suggests that a combination of PD, UF AI and PS statistics should be 20 

used in studies of phylogeny-trait association. These combine correct Type I error rates, 21 

reasonable power that is evenly spread across the range of tree shapes tested, and utilize both 22 

branching order (topology) and length (in the case of UF and PD) information.   23 

 24 

AVAILABILITY 25 



 22 

The software ‘Befi-BaTS’, more formally BaTS v0.10.1, is packaged as an executable .jar file 1 

requiring Java J2SE1.5+, and all source code, is available publicly on GitHub at 2 

https://github.com/lonelyjoeparker/befi-bats-gui. Potential users are encouraged to bear in mind 3 

that this project is still in development and documentation, binaries, and source code may 4 

change between versions. The authors welcome feedback, in particular bug reports. 5 
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 1 
TABLES 2 

 3 

Statistic Type I rate 

AI 0.051 

PS 0.046 

UF 0.028 

PD 0.041 

NR 0.062 

NT 0.041 

MC 0.029 

Table 1: Type I error rate of statistics implemented in the Befi-BaTS package. Error rate given is 4 

the proportion of significant results (p ≤ 0.05) observed in a data set of 897 randomly assigned 5 

tip trait values (binary character, 10,000 shuffles). 6 

 7 

8 
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 1 
 2 

 

Patient 1 

γ = -2.34, B1 = 35.5 

Patient 7 

γ = 3.20, B1 = 35.4 

Statistic1 

Mean 

posterior 

estimate 

95 % HPD2 

(lower, 

upper) P3 

Mean 

posterior 

estimate 

95 % HPD2 

(lower, 

upper) P3 

AI 2.83 2.07, 3.58 0.000 0.03 0.00, 0.09 <0.005 

PS 29.72 25, 34 0.000 6.03 4, 8 <0.005 

UniFrac 0.45 0.38, 0.52 0.010 0.85 0.77, 0.92 0.010 

NT 442 

373.16, 

516.11 0.000 60.18 

45.29, 

76.86 <0.005 

NR 17330 

14185, 

20894 0.090 2324 1758, 2984 <0.005 

PD 1400 1193, 1631 0.000 290 

226.12, 

361.47 <0.005 

MCN1 1.57 1, 2 0.080 9.96 10, 10 0.010 

MCN2 2.09 2, 3 0.190 5.93 6, 6 0.010 

MCserum 4.36 3, 6 0.270 31.33 31, 33 0.010 

MCtumour 4.09 2, 7 0.010 10.85 6, 15 0.010 

Table 1: Compartmentalization during hepatitis C virus (HCV) infection; data from Sobesky et 3 

al., 2007. 1Statistics: AI, association index; PS, parsimony score; UF, unique fraction; NT, 4 

nearest taxon; NR, net relatedness; PD, phylogenetic diversity; MC statistics, maximum 5 

monophyletic clade sizes of: N1, first non-tumorous cirrhotic nodule; N2, second non-tumorous 6 

cirrhotic nodule; serum, serum sample; tumour, tumorous cirrhotic nodule. 2Estimated upper and 7 
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lower 95% highest posterior densities of each statistic. 3Significance of observed mean posterior 1 

estimate of the statistic. 2 

 3 

4 
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 1 
FIGURES 2 

 3 

Figure 1: Trees a) and b) have identical topologies. The association between the ‘red’ and 4 

‘black’ traits and phylogeny, as measured by the AI statistic, is necessarily the same for both. 5 

6 
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 1 

 2 

Figure 2: The trees presented in Figure 2; this time phylogeny-trait association is measured by 3 

four statistics (UniFrac, Nearest Taxon (‘NT’), Net Relatedness (‘NR’) & Phylogenetic Diversity 4 

(‘PD’)). The value of the statistic is proportional to the strength of association; higher values are 5 

more strongly associated. Tree b) has stronger phylogeny-trait association than tree a). 6 

7 
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High γ 

(‘comb’) 

Low γ 

(‘star’) 
   

 Low B1 

(‘symmetrical’) 

High B1 

(‘unbalanced’) 

 

 2 

Figure 3: Diagram of the spread of tree shapes represented by the nine master topologies used 3 

in simulation, ordered by their node spread (γ statistic, vertical axis) and tree imbalance, (B1, 4 

horizonal axis).  5 

6 
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 1 

Figure 4: CDFs and performance of AI statistic on simulated data. Top panel: CDFs of each 2 

simulation, from no shuffles, or completely associated (red) to 10,000 shuffles (violet). The unity 3 

(unit uniform distribution) is shown in grey. Centre panel: proportion of simulations rejecting H0 4 

(out of 897 possible) with increasing trait re-arrangements (log10). Lower panel: mean 5 

significance of observed AI statistic.6 
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 1 

Figure 5: CDFs and performance of parsimony statistic (PS) on simulated data. Top panel: 2 

CDFs of each simulation, from no shuffles, or completely associated (red) to 10,000 shuffles 3 

(violet). The unity (unit uniform distribution) is shown in grey. Centre panel: proportion of 4 

simulations rejecting H0 (out of 897 possible) with increasing trait re-arrangements (log10). Lower 5 

panel: mean significance of observed parsimony statistic.6 
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 1 

Figure 6: CDFs and performance of unique fraction (UniFrac) statistic on simulated data. Top 2 

panel: CDFs of each simulation, from no shuffles, or completely associated (red) to 10,000 3 

shuffles (violet). The unity (unit uniform distribution) is shown in grey. Centre panel: proportion 4 

of simulations rejecting H0 (out of 897 possible) with increasing trait re-arrangements (log10). 5 

Lower panel: mean significance of observed UniFrac statistic..6 
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 1 

Figure 7: CDFs and performance of phylogenetic diversity (PD) statistic on simulated data. Top 2 

panel: CDFs of each simulation, from no shuffles, or completely associated (red) to 10,000 3 

shuffles (violet). The unity (unit uniform distribution) is shown in grey. Centre panel: proportion 4 

of simulations rejecting H0 (out of 897 possible) with increasing trait re-arrangements (log10). 5 

Lower panel: mean significance of observed PD statistic.6 
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 1 

Figure 8: CDFs and performance of nearest taxon (NT) statistic on simulated data. Top panel: 2 

CDFs of each simulation, from no shuffles, or completely associated (red) to 10,000 shuffles 3 

(violet). The unity (unit uniform distribution) is shown in grey. Centre panel: proportion of 4 

simulations rejecting H0 (out of 897 possible) with increasing trait re-arrangements (log10). Lower 5 

panel: mean significance of observed NT statistic.6 
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 1 

Figure 9: CDFs and performance of net relatedness (NR) statistic on simulated data. Top 2 

panel: CDFs of each simulation, from no shuffles, or completely associated (red) to 10,000 3 

shuffles (violet). The unity (unit uniform distribution) is shown in grey. Centre panel: proportion 4 

of simulations rejecting H0 (out of 897 possible) with increasing trait re-arrangements (log10). 5 

Lower panel: mean significance of observed NR statistic.6 
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 1 

Figure 10: CDFs and performance of MC statistic on simulated data. Top panel: CDFs of each 2 

simulation, from no shuffles, or completely associated (red) to 10,000 shuffles (violet). The unity 3 

(unit uniform distribution) is shown in grey. Centre panel: proportion of simulations rejecting H0 4 

(out of 897 possible) with increasing trait re-arrangements (log10). Lower panel: mean 5 

significance of observed MC statistic.6 
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 2 

Figure 11: The CDF for each statistic was compared to a unit uniform distribution under 3 

increasing numbers of taxon rearrangements using a Kolmogorov-Smirnoff test. Shown are the 4 

value of the difference statistic (lower plot) and p-value (upper plot) in each separate simulation 5 

replicate (log10(taxon rearrangements)).6 
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 1 

Figure 12: Proportion of rejections of H0 (p ≤ 0.05) with increasing numbers of random taxon 2 

trait-value rearrangements (log scale) in different statistics. The dashed red line is at 0.05 (5%), 3 

the proportion of trials expected to reject H0 under the null hypothesis at α = 0.05 if the Type I 4 

error rate is correct. 5 

6 
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Figure 13: Mean significance of observed trait-association values by different statistics with 2 
increasing numbers of random taxon trait-value rearrangements (log scale). 3 

4 
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 1 

Figure 14: Distribution of tree shape statistics of 897 simulated data sets used in this study. 2 

Each alignment was simulated from one of nine master topologies picked to give a range of tree 3 

topologies typical of human immunodeficiency virus (HIV) evolution. Simulated alignments were 4 

analysed in BEAST version 1.4.6 (see Methods for details). Mean tree shape statistics given 5 

were calculated from the posterior set of trees (PST) in each analysis using code from the 6 

FigTree version 1.1 package (retrieved from http://beast-mcmc.googlecode.com; my 7 

implementation is available on request). 8 

 9 
10 
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 2 
Figure 15a: Variation of statistical power with tree shape for various phylogeny-trait association 3 
statistics. Higher γ  (Pybus & Harvey, 2000) values indicate trees where the distribution of nodes 4 

is skewed towards the tips of the phylogeny; Higher B1 values (Kirkpatrick & Slatkin, 1992) 5 
indicate greater node imbalance. ‘P’, the significance of each data set in the totally associated 6 
model.  7 

8 
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 2 

Figure 15b: A more detailed look at dependence of power on tree shape in MC and NT 3 

statistics. The MC statistic, left, shows weaker power in trees with strong node imbalance (high 4 

B1 statistic) and a distribution of nodes that is skewed towards the tips of the tree (high γ). The 5 

NT statistic, right, is also weaker in topologies with high γ , but in trees with evenly-balanced 6 

nodes. 7 

8 
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Figure 16: Representation of typical tree shapes for certain combinations of γ and B1. The NT 

statistic exhibited weak power in symmetrical, comb-like trees (red dashed box). The MC 

statistic exhibited weak power in unbalanced, comb-like trees (blue dashed box).  
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